Introducción.
El Problema del Agente Viajero o TSP (del inglés Travelling Salesman Problem) básicamente es un problema de Optimización que busca la minimización. Surge con la necesidad de buscar la ruta más corta o de menor costo en un conjunto de ciudades o puntos, esto sin depender del orden a seguir en el viaje siempre y cuando el recorrido sea cerrado.
El TSP es muy importante ya que se aplicar en la vida diaria cuando simplemente estamos de viaje y queremos dar el tour más corto en los lugares turísticos, o hasta en la industria por ejemplo cuando se busca hacer taladrado en piezas de metal tomando el menor tiempo, otras situaciones que pueden aplicar son en el autobús escolar, el repartidor de comida y el diseño de tarjetas electrónicas.
La dificultad de este problema crece a medida de que aumentas las ciudades ya que se generan cada vez más combinaciones que por fuerza bruta; lo cual sería muy tedioso y cansado para resolver.
La Optimización por Colonia de Hormigas o ACO (del inglés Ant Colony Optimization) es una metaheurística para la resolución de problemas como la ruta más corta, la cual se inspira en las colonias de hormigas reales ya que por naturaleza se organizan para ir por la comida cada vez por una mejor ruta.
El ACO es justamente lo que el TSP necesita porque es un Algoritmo que nos ayudará a encontrar la ruta con menor costo.
En esta entrada implementaremos el ACO para la resolución de instancias TSP, primero dando un enfoque teórico para conocer y entender cómo se soluciona este problema, y después la implementación con un programa de la solución de una instancia donde se mostraran los parámetros utilizados y finalmente la verificación de resultados.